Replication Data for: Multiwavelets applied to metal-ligand interactions: Energies free from basis set errors (doi:10.18710/WA5YCF)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link) (external link)

Document Description

Citation

Title:

Replication Data for: Multiwavelets applied to metal-ligand interactions: Energies free from basis set errors

Identification Number:

doi:10.18710/WA5YCF

Distributor:

DataverseNO

Date of Distribution:

2021-02-08

Version:

2

Bibliographic Citation:

Brakestad, Anders; Wind, Peter; Jensen, Stig Rune; Frediani, Luca; Hopmann, Kathrin Helen, 2021, "Replication Data for: Multiwavelets applied to metal-ligand interactions: Energies free from basis set errors", https://doi.org/10.18710/WA5YCF, DataverseNO, V2

Study Description

Citation

Title:

Replication Data for: Multiwavelets applied to metal-ligand interactions: Energies free from basis set errors

Identification Number:

doi:10.18710/WA5YCF

Authoring Entity:

Brakestad, Anders (UiT The Arctic University of Norway)

Wind, Peter (UiT The Arctic University of Norway)

Jensen, Stig Rune (UiT The Arctic University of Norway)

Frediani, Luca (UiT The Arctic University of Norway)

Hopmann, Kathrin Helen (UiT The Arctic University of Norway)

Producer:

UiT The Arctic University of Norway

Software used in Production:

MRChem

Software used in Production:

ORCA

Software used in Production:

ORCA

Grant Number:

TFS2016KHH

Grant Number:

262695

Grant Number:

nn4654k

Grant Number:

nn9330k

Distributor:

DataverseNO

Distributor:

UiT The Arctic University of Norway

Access Authority:

Hopmann, Kathrin Helen

Depositor:

Brakestad, Anders

Date of Deposit:

2021-01-04

Holdings Information:

https://doi.org/10.18710/WA5YCF

Study Scope

Keywords:

Chemistry, Physics, chemistry, physics, multiwavelets, basis set limit, metal-ligand interactions, benchmark

Abstract:

<h3>Introduction</h3> This Dataverse record contains data for reproducing the results in our corresponding journal article. For more information about the computational protocols used to generate the data, please see the journal article or the ChemRxiv entry (see below). <h3>How to use</h3> This data set two data files: molecular coordinates (ALL_GEOMETRIES.txt) and metal-ligand interaction energy data (Raw_Data.csv). These formats lend themselves for easy preparation and analysis with Python.<br> <br> For example, in order to load the data set into a Pandas DataFrame, do the following: <pre> <code> import pandas as pd data = pd.read_csv('Raw_Data.csv') </code> </pre> You can prepare a list of all geometries in the following way: <pre> <code> with open('ALL_GEOMETRIES.txt') as f: raw_string = f.read() molecules = [mol.split('\n') for mol in raw_string.split('\n\n')] </code> </pre> The ReadMe file contains descriptions of all data fields found in Raw_Data.csv. All energies are given in Hartrees, and all geometries are given in Angströms. <h3>Journal article</h3> <a href="https://doi.org/10.1063/5.0046023">Brakestad et al. "Multiwavelets applied to metal–ligand interactions: Energies free from basis set errors". J. Chem. Phys. (2021)</a><br><br> <h3>Abstract from journal article</h3> Transition metal-catalyzed reactions invariably include steps where ligands associate or dissociate. In order to obtain reliable energies for such reactions, sufficiently large basis sets need to be employed. In this paper, we have used high-precision multiwavelet calculations to compute the metal–ligand association energies for 27 transition metal complexes with common ligands, such as H2, CO, olefins, and solvent molecules. By comparing our multiwavelet results to a variety of frequently used Gaussian-type basis sets, we show that counterpoise corrections, which are widely employed to correct for basis set superposition errors, often lead to underbinding. Additionally, counterpoise corrections are difficult to employ when the association step also involves a chemical transformation. Multiwavelets, which can be conveniently applied to all types of reactions, provide a promising alternative for computing electronic interaction energies free from any basis set errors. <h3>ChemRxiv record</h3> <p><a href="https://doi.org/10.26434/chemrxiv.13669951.v1">https://doi.org/10.26434/chemrxiv.13669951.v1</a></p> </br>

Date of Collection:

2020-01-31-2021-01-31

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Related Publications

Citation

Title:

Brakestad, A., Wind, P., Jensen, S. R., Frediani, L., & Hopmann, K. H. (2021). Multiwavelets applied to metal–ligand interactions: Energies free from basis set errors. The Journal of Chemical Physics, 154(21), 214302. https://doi.org/10.1063/5.0046023

Identification Number:

10.1063/5.0046023

Bibliographic Citation:

Brakestad, A., Wind, P., Jensen, S. R., Frediani, L., & Hopmann, K. H. (2021). Multiwavelets applied to metal–ligand interactions: Energies free from basis set errors. The Journal of Chemical Physics, 154(21), 214302. https://doi.org/10.1063/5.0046023

Citation

Title:

Brakestad, A., Wind, P., Jensen, S. R., Frediani, L., & Hopmann, K. (2021). Multiwavelets Applied to Metal-Ligand Interactions: Energies Free from Basis Set Errors. ChemRxiv. https://doi.org/10.26434/chemrxiv.13669951.v1

Identification Number:

10.26434/chemrxiv.13669951.v1

Bibliographic Citation:

Brakestad, A., Wind, P., Jensen, S. R., Frediani, L., & Hopmann, K. (2021). Multiwavelets Applied to Metal-Ligand Interactions: Energies Free from Basis Set Errors. ChemRxiv. https://doi.org/10.26434/chemrxiv.13669951.v1

Other Study-Related Materials

Label:

00_ReadMe.txt

Notes:

text/plain

Other Study-Related Materials

Label:

ALL_GEOMETRIES.txt

Notes:

text/plain

Other Study-Related Materials

Label:

Raw_Data.csv

Text:

All GTO and MW energies plus additional metadata

Notes:

text/csv