10.18710/WA5YCFBrakestad, AndersAndersBrakestad0000-0001-9361-2759UiT The Arctic University of NorwayWind, PeterPeterWind0000-0003-1611-3395UiT The Arctic University of NorwayJensen, Stig RuneStig RuneJensen0000-0002-2175-5723UiT The Arctic University of NorwayFrediani, LucaLucaFrediani0000-0003-0807-682XUiT The Arctic University of NorwayHopmann, Kathrin HelenKathrin HelenHopmann0000-0003-2798-716XUiT The Arctic University of NorwayReplication Data for: Multiwavelets applied to metal-ligand interactions: Energies free from basis set errorsDataverseNO2021ChemistryPhysicschemistryphysicsmultiwaveletsbasis set limitmetal-ligand interactionsbenchmarkHopmann, Kathrin HelenKathrin HelenHopmannUiT The Arctic University of NorwayUiT The Arctic University of NorwayUiT The Arctic University of NorwayUiT The Arctic University of Norway2021-01-042023-09-282020-01-31/2021-01-3110.1063/5.004602310.26434/chemrxiv.13669951.v17948102078388602text/plaintext/plaintext/csv2.1CC0 1.0<h3>Introduction</h3> This Dataverse record contains data for reproducing the results in our corresponding journal article. For more information about the computational protocols used to generate the data, please see the journal article or the ChemRxiv entry (see below). <h3>How to use</h3> This data set two data files: molecular coordinates (ALL_GEOMETRIES.txt) and metal-ligand interaction energy data (Raw_Data.csv). These formats lend themselves for easy preparation and analysis with Python.<br> <br> For example, in order to load the data set into a Pandas DataFrame, do the following: <pre> <code> import pandas as pd data = pd.read_csv('Raw_Data.csv') </code> </pre> You can prepare a list of all geometries in the following way: <pre> <code> with open('ALL_GEOMETRIES.txt') as f: raw_string = f.read() molecules = [mol.split('\n') for mol in raw_string.split('\n\n')] </code> </pre> The ReadMe file contains descriptions of all data fields found in Raw_Data.csv. All energies are given in Hartrees, and all geometries are given in Angströms. <h3>Journal article</h3> <a href="https://doi.org/10.1063/5.0046023">Brakestad et al. "Multiwavelets applied to metal–ligand interactions: Energies free from basis set errors". J. Chem. Phys. (2021)</a><br><br> <h3>Abstract from journal article</h3> Transition metal-catalyzed reactions invariably include steps where ligands associate or dissociate. In order to obtain reliable energies for such reactions, sufficiently large basis sets need to be employed. In this paper, we have used high-precision multiwavelet calculations to compute the metal–ligand association energies for 27 transition metal complexes with common ligands, such as H2, CO, olefins, and solvent molecules. By comparing our multiwavelet results to a variety of frequently used Gaussian-type basis sets, we show that counterpoise corrections, which are widely employed to correct for basis set superposition errors, often lead to underbinding. Additionally, counterpoise corrections are difficult to employ when the association step also involves a chemical transformation. Multiwavelets, which can be conveniently applied to all types of reactions, provide a promising alternative for computing electronic interaction energies free from any basis set errors. <h3>ChemRxiv record</h3> <p><a href="https://doi.org/10.26434/chemrxiv.13669951.v1">https://doi.org/10.26434/chemrxiv.13669951.v1</a></p> </br>MRChem, 1ORCA, 4.2.1ORCA, 4.1.2Tromsø, NorwayTromsø Research FoundationTFS2016KHHThe Research Council of Norway262695UNINETT Sigma2nn4654kUNINETT Sigma2nn9330k