5,151 to 5,160 of 11,138 Results
Adobe PDF - 778.1 KB -
MD5: 3c983dfc912f73d942729ec3087c47b7
|
MATLAB Data - 12.2 MB -
MD5: 1125fc17fc350510d6a42080d86c31f2
|
Plain Text - 56.9 MB -
MD5: b253b2f84360581bef52982273413492
|
Mar 30, 2022
Bianchi, Filippo Maria, 2022, "Benchmark dataset for graph classification", https://doi.org/10.18710/TIZ9II, DataverseNO, V1
This repository contains datasets to quickly test graph classification algorithms, such as Graph Kernels and Graph Neural Networks. The purpose of this dataset is to make the features on the nodes and the adjacency matrix to be completely uninformative if considered alone. Theref... |
Mar 30, 2022 -
Benchmark dataset for graph classification
Plain Text - 10.7 KB -
MD5: 38648d2160df71c52bdb28a70c9d193a
Dataset description |
Mar 30, 2022 -
Benchmark dataset for graph classification
Unknown - 21.6 MB -
MD5: 5746717f598a39097f7069863aa03846
|
Mar 30, 2022 -
Benchmark dataset for graph classification
Unknown - 1.4 MB -
MD5: 5997ea96eb62e41687f77af999fb5547
|
Mar 30, 2022 -
Benchmark dataset for graph classification
Unknown - 16.1 MB -
MD5: 641dd98f04cf4b4f5d4ba6f18a9ad189
|
Mar 30, 2022 -
Benchmark dataset for graph classification
Unknown - 1.1 MB -
MD5: ee8c5898da28515e6d65b39cf4f31172
|
Jan 24, 2018 - NMDC Node UiT
UiT The Arctic University of Norway, 2018, "Scenery photos without the frame (1981)", https://doi.org/10.18710/GWCLHD, DataverseNO, V1, UNF:6:uALl/QSTKQCfB4nlESJGSw== [fileUNF]
Contains photographs documenting under-water scenery and fauna across Svalbard. The data base contains photographs documenting under-water scenery and fauna across Svalbard and mainland at depths from ca. 5 to 30 m at non-marked, non-revisited locations. These non-scaled photogra... |